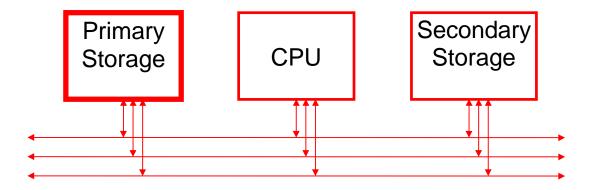

# Lecture Z

Computer Architecture

Text: Chapter 1

What are the components of a Computer?

- Central Processing Unit
   Program instruction execution.
   Arithmetic
   Decision making and program flow
- Primary Storage (Internal Memory)
   Binary numbers only which may be either program instructions or program data.
- Secondary Storage
   Long-term storage such as disk and tape.




All three units are connected by the System Bus

The bus carries three kinds of information:

Address Data Control

#### **Numbers from the Hardware View**



Primary storage is organized into units of 8 bits Each is called a **BYTE** 

Each byte in memory is given a number, called an **ADDRESS**:

| Byte    | 0  | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | Α  | В  | C  | D  |
|---------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| address |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| Value   | 03 | 00 | FF | FF | 40 | 20 | 21 | 60 | 61 | 90 | 91 | E1 | 7B | 80 |

Only the values are stored in memory, not the addresses.

#### Q:

What is range of two's complement values a byte may hold?

#### Q:

If the address numbers are 20 bits long, what is the maximum number of bytes that may be addressed?

A larger unit of storage is the WORD (16 bits):

A word is two bytes.

The address of a word is the address of its first byte:

Byte 8 Α C0 2 4 6 address 03 00 FF FF 40 20 21 E1 60 61 90 91 7B 80 Value

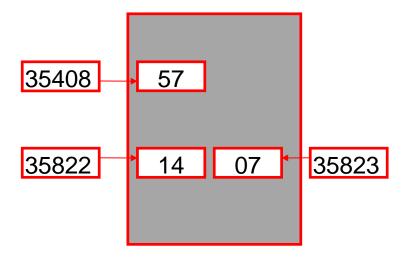
# Q:

What is the two's complement range for a word?

## Other units of storage:

Doubleword 4-bytes (32 bits)

Quadword 8-bytes (64 bits)

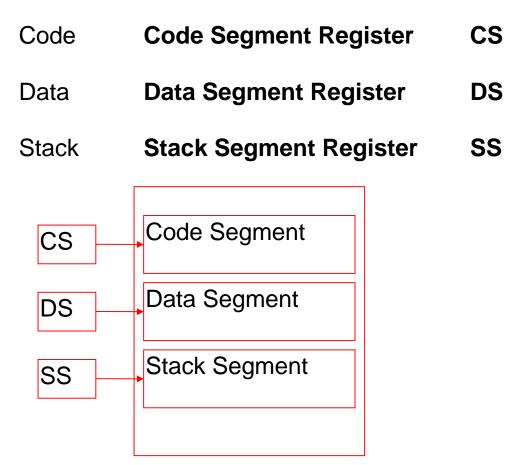

Paragraph 16-bytes (128 bits)

| Numbers of Bytes |                       |           |          |  |
|------------------|-----------------------|-----------|----------|--|
| Kilobyte         | 2 <sup>10</sup> bytes | 1024      | Thousand |  |
| Megabyte         | 2 <sup>20</sup> bytes | 1,048,576 | Million  |  |
| Gigabyte         | 2 <sup>30</sup> bytes |           | Billion  |  |
| Terabyte         | 2 <sup>40</sup> bytes |           | Trillion |  |

Words are stored in reverse order:

Suppose a byte with the value 87 (57h') is stored in memory in location number 35408h,

and a word with value 1812 (0714h) is stored in memory in location number 35822h:




#### **Memory Organization**

The CPU must know where data items are, and where the program is.

The items are stored in memory in what is called a **SEGMENT**.

The CPU contains **REGISTERS** which contain the addresses of the program's three main components:



A segment must begin on a Segment Boundary (an address evenly divisible by 16). (Recall, there are 16 bytes in a paragraph).

Hint: A hex number is evenly divisible by 16 if it ends in 0.

#### How Does the CPU find a data item?

It needs to know two things...

#### Where is the segment?

## Where is the byte within that segment?

The calculation is done by adding the address of the segment to the address of the byte within the segment.

#### Example:

Suppose the segment begins at address 38680h, and the byte of data is the 50<sup>th</sup> byte (byte number 0032h).

Note that there is no need to store the last digit of 38680h, as it will **always** be a zero (segments are on paragraph boundaries). The segment register, therefore, would contain 3868h.

The address is calculated as:

| Segment | address | 5       | 386 | <b>58</b> 0 |
|---------|---------|---------|-----|-------------|
| Address | within  | segment | +   | 32          |

Address of the byte: 386B2

# The Intel Processor (CPU) Family

Note that register sizes affect:

Maximum data size

Maximum number of bytes that can be addressed

| Processor | Size of registers | Size of data bus | Size of<br>Address | Bytes<br>Addressed       |
|-----------|-------------------|------------------|--------------------|--------------------------|
| 8086      | 16 bits           | 16 bits          | 20 bits            | 1 MB (2 <sup>20</sup> )  |
| 80286     | 16                | 16               | 24                 | 16 MB (2 <sup>24</sup> ) |
| 80386     | 32                | 32               | 32                 | 4 GB (2 <sup>32</sup> )  |
| 80486     | 32                | 32               | 32                 | 4 GB (2 <sup>32</sup> )  |
| Pentium   | 32                | 64               | 32                 | 4 GB (2 <sup>32</sup> )  |

# All of these processors have the following registers:

| Segm              | ent Registers       | General | <b>Purpose Registers</b> |
|-------------------|---------------------|---------|--------------------------|
| CS                | Code Segment        | AX      | Accumulator              |
| DS                | Data Segment        | BX      | Base Register            |
| SS                | Stack Segment       | CX      | Counter Register         |
| ES                | Extra Segment       | DX      | Data Register            |
| Pointer Registers |                     | Index R | egisters                 |
| ΙP                | Instruction Pointer | SI      | Source Index             |
| BP                | Base Pointer        | DI      | <b>Destination Index</b> |
| SP                | Stack Pointer       |         |                          |

## Flags Register

# **IBM PC Memory Organization**

| Address            | Purpose                        |  |  |  |
|--------------------|--------------------------------|--|--|--|
| 960K<br>(X'F0000') | 64K base system ROM            |  |  |  |
| 768K<br>(X'C0000') | 192 K Memory<br>Expansion Area |  |  |  |
| 640K<br>(X'A0000') | 128K Video<br>Display Area     |  |  |  |
|                    | 640K RAM                       |  |  |  |
| CS                 | Code Segment                   |  |  |  |
| SS                 | Stack Segment                  |  |  |  |
| DS                 | Data Segment                   |  |  |  |
| 0K<br>(00000h)     |                                |  |  |  |